

Release Note

Release Date : August 2019

Product Ver. : Civil 2020 (v1.1)

DESIGN OF CIVIL STRUCTURES

Integrated Solution System for Bridge and

Engineering

Enhancements

- 1. Maximum Number Limit of Erection Load Cases for Construction Stage Analysis
- 2. Multiple Modulus of Elasticity for Composite Prestressed Girder
- 3. Improvement in Prestressed Composite Bridge Wizard: Non-continuous Precast Beam
- 4. Improvement in Prestressed Composite Bridge Wizard: Diaphragm
- 5. Bilinear Type Spring Stiffness for Surface Spring Support
- 6. Force/Stress Contouring based on Center Value of Plate Elements
- 7. Concurrent Reactions of Moving Load Analysis with respect to Node Local Axis
- 8. Concurrent Forces of Elastic Links and General Links for Moving Load Analysis
- 9. Analysis Filtering of Elastic Links and General Links in Moving Load Analysis
- 10. New Inelastic Hinge Type: Parametric P-M (multi-curve)
- 11. Precast Section DB: AS
- 12. Response Spectrum Function: AS 5100.2: 2017
- 13. User-Defined Drying Basic Shrinkage Strain: AS 5100.5-2017
- 14. Relaxation of Tendons: AS 5100.5-2017
- 15. User-Defined Stress Limit for Crack Check: AS 5100.5-2017
- 16. Dynamic Load Allowance for Expansion Joint: AASHTO LRFD
- 17. Standard Vehicles: Indiana Department of Transportation
- 18. Standard Vehicles: Colombian CCP-14
- 19. Auto-Generation of Load Combination: BS 5400
- 20. Design Report in Czech
- 21. Response Spectrum Function: Philippines DPWH-BSDS 2013
- 22. India Material Database Update
- 23. IRS Load Combination
- 24. Prestressed Concrete Design by IRS Concrete Bridge Code

1. Maximum Number Limit of Erection Load Cases for Construction Stage Analysis

- Maximum limit in the number of erection load cases is increased from 5 to 10.
- More erection loads can be applied during construction stage and the results can be viewed with different erection load cases and hence different load factors in the load combination.

Analysis > Analysis Control > Construction Stage

nstruction Stage Analysis Control Data				×
Final Stage		Cable-Pretension Force Control		
Last Stage Other Stage	~	Internal Force OExternal	al Force Add	OReplace
Restart Construction Stage Analysis Analysis Option Analysis type Linear Analysis Independent Stage Image: Construction Stage Indude Equilibrium Element Nodal For Include P-Delta Effect Include Time Dependent Effect Load Cases to be Distinguished from Dead Load No Load Case Name Type 8 Erection Load 8 9 Erection Load 9 10 Erection Load 10	Select Stages for Restart Nonlinear Analysis Control Accumulative Stage ces P-Delta Analysis Control Time Dependent Effect Control ad for C.S. Output Case 1 LC8 LC9 LC10 V Delete	Initial Force Control Convert Final Stage Member F Truss Change Cable Element to Equiv Apply Initial Member Force to C Initial Displacement for C.S. Initial Tangein Colorement for All Lack-of-Fit Force free Apply Camber Displacement to Consider Stress Decrease at Lee Linear Interpolation Beam Section Property Changes Constant Frame Output Calculate Concurrent Forces of Calculate Concurrent Forces & Save Output of Current Stage(Be	Define Erection Load Load Case Name Load Type for C.S. Assignment Load Cases Load Case List of Load Case	Erection Load 10 Dead Load of Wearing Surfaces and Uti v Selected Load Case LC10 -> <
		Remove Construction Stage An	alysis Control Data	
			ОК	Cancel

2. Multiple Modulus of Elasticity for Composite Prestressed Girder

- The modular ratio between slab concrete and girder concrete can be defined to determine the creep-transformed section properties of the composite section.
- The tendon and reinforcement are not taken into account to calculate the creep-transformed section properties and hence approximate stresses.
- Properties > Section > Composite

ection Data		×
DB/User Value SRC Comb	bined PSC Tapered Composite Steel Girder	
Section ID 6	Name Composite	
	Section Type : Composite PSC Slab Bc 2000 mm tc 200 mm Hh 0 mm	
	Girder PSC Value Type Import	
	Material	
Display Centroid	Egd/Esb .13525 Dgd/Dsb 1 Pgd 0.2 Psb 0.2	
○ FEM ○ Equation	Tod/Tsb 1 Multiple Modulus of Elasticity Fod/Esb (Creen) 3	
Offset : Center-Center	Edg/Esb (Shrinkage) 2	
Change Offset	Consider Shear Deformation.	
Show Calculation Results	OK Cancel Apply	
Com	posite PSC section	

	Value(Before)	Value(After)	Long Term	Shrinkage	Unit
Area	5.490254e+005	9.013707e+005	6.823587e+005	7.490254e+005	mm^2
Asy	6.270599e+005	5.872924e+005	4.045292e+005	4.601618e+005	mm^2
Asz	4.422417e+005	3.684182e+005	3.279467e+005	3.290380e+005	mm^2
lxx	1.659530e+010	1.894427e+010	1.748419e+010	1.792864e+010	mm^4
lyy	1.195447e+011	3.360157e+011	2.276104e+011	2.672750e+011	mm^4
zz	1.230070e+010	1.297491e+011	5.674514e+010	7.896736e+010	mm^4
Сур	3.750000e+002	3.750000e+002	3.750000e+002	3.750000e+002	mm
Cym	3.750000e+002	3.750000e+002	3.750000e+002	3.750000e+002	mm
Czp	9.015894e+002	5.100687e+002	7.058782e+002	6.341514e+002	mm
Czm	5.984106e+002	9.899313e+002	7.941218e+002	8.658486e+002	mm
Qyb	0.000000e+000	0.000000e+000	0.000000e+000	0.000000e+000	mm^2
Qzb	0.000000e+000	0.000000e+000	0.000000e+000	0.000000e+000	mm^2
Peri:0	4.314130e+003	8.714130e+003	8.714130e+003	8.714130e+003	mm
Peri:I	0.000000e+000	0.000000e+000	0.000000e+000	0.000000e+000	mm
Center:y	3.750000e+002	1.000000e+003	1.000000e+003	1.000000e+003	mm
Center:z	5.984106e+002	9.899313e+002	7.941218e+002	8.658486e+002	mm
y1	-1.200000e+002	-1.200000e+002	-1.200000e+002	-1.200000e+002	mm
z1	9.015894e+002	5.100687e+002	7.058782e+002	6.341514e+002	mm
y2	1.200000e+002	1.200000e+002	1.200000e+002	1.200000e+002	mm
z2	9.015894e+002	5.100687e+002	7.058782e+002	6.341514e+002	mm
y3	3.500000e+002	3.500000e+002	3.500000e+002	3.500000e+002	mm
z3	-5.984106e+002	-9.899313e+002	-7.941218e+002	-8.658486e+002	mm
y4	-3.500000e+002	-3.500000e+002	-3.500000e+002	-3.500000e+002	mm
z4	-5.984106e+002	-9.899313e+002	-7.941218e+002	-8.658486e+002	mm

Creep Transformed Section Properties

3. Improvement in Prestressed Composite Bridge Wizard: Non-continuous Precast Beam

- New option is introduced to apply non-continuous condition for the precast beams between neighboring spans.
- Bending moment is released at the slab connecting two spans.

4. Improvement in Prestressed Composite Bridge Wizard: Diaphragm

Individual diaphragms can be included/excluded in the modeling of prestressed composite girder bridge.

5. Bilinear Type Spring Stiffness for Surface Spring Support

- · Bilinear spring type is added in the Surface Spring Support to simulate the strength limit of the soil. The strength limit should be defined by the user.
- Both Point Spring Support and Elastic Link are supported.

6. Force/Stress Contouring based on Center Value of Plate Elements

- Stresses at the node are determined by the linear interpolation of Gauss points, which often leads to stress exceeding yield stress in the material nonlinear analysis.
- Plate stress contour can now be displayed using the value at the element center instead of element nodes. The center values will not exceed the yield stress.

7. Concurrent Reactions of Moving Load Analysis with respect to Node Local Axis

- · Concurrent reactions due to moving load case can be viewed with respect to node local axis as well as global axis.
- This is useful to check concurrent reactions in the skewed bridges or horizontally curved bridges.

8. Concurrent Forces of Elastic Links and General Links for Moving Load Analysis

- Concurrent forces of Elastic Links and General Links are provided for the moving load analysis.
- This is useful when the bearings of the bridge are simulated using Elastic links.
- Analysis > Analysis Control > Moving Load,

Moving Load Analysis Contr	rol Data X
Truck/Train Load Control O	ption
Analysis Method	
Exact	Pivot O Quick
Load Point Selection	
O Influence Line Deper	ndent Point All Points
Influence Generating Poin	ts
Number/Line Element	t: 5 🚔
O Distance between Po	pints : 0 ft
Analysis Results	
Plate	Frame
O Center	Normal
Center + Nodal	Normal + Concurrent
Stress	- Force/Stress
	Combined Stress
Concurrent Force	
Concurrent Force of E	ilastic/General Links
	Ocrain
	Group:
✓ Displacements	
() All	⊖ Group : ∨
Forces/Moments	
All	◯ Group : V
Elastic/General Links	
) All	● Group : EL ✓
	OK Cancel

Moving Load Analysis Control

Concurrent Forces of Elastic Links

9. Analysis Filtering of Elastic Links and General Links in Moving Load Analysis

- The user can choose a group of Elastic Links and General Links to be analyzed for the moving load cases.
- This filter option makes the analysis time much shorter when there are a lot of Elastic Links / General Links in the model.

10. New Inelastic Hinge Type: Parametric P-M (multi-curve)

• Parametric P-M (multi-curve) is a new inelastic hinge type described by bending moment vs. curvature relationship which is a function of the axial force.

٠

• Unlike the other types of hinge, the moment vs. curvature relationship can be defined by the user depending on the axial forces.

Properties > Inelastic Properties > Inelastic Hinge

escription :				
Element Type		Material Type		
Beam-Colur	າາກ	RC/SRC(encased)	1	
	🔾 General Link	O Steel/SRC(filled)		
Definition		Hin	ige Type	
O Moment - R	otation(M-Theta)	۲) Skeleton	Model
Moment - C	Curvature (M-Phi Distributed)	C) Fiber Mo	del
Interaction Type	e	Fiber Section		
○ None		O Auto Generation	١	User Defined
O P-M in Stree	ngth Calculation	Section :		\sim
OP-M-M in St	atus Determination	Fiber Name :		~
Component Pro	perties	ustorogia Madal		
	3	Kinematic Hardening	-	Properties
Fy	3	Kinematic Hardening		Properties
Fz	3	Kinematic Hardening	T	Properties
Mx	3	Kinematic Hardening	-	Properties
Му	3 F	P-M Multi-Curve Type	•	Properties
Mz Mz	3 F	9-M Multi-Curve Type	•	Properties
	Yield S	urface Properties		
		ОК	Cano	el Apply
		211	- Con It	- PPI

- The flexural behavior of the beam element is described by bending moment vs. curvature relationship. This relationship is input in the form of multilinear functions. The moment vs. curvature relationship is a function of the axial force.
 - The flexural behavior of the beam element is defined by two bending vs. curvature relationships, one for each principal plane of inertia.Interaction between the two bending moments (My and Mz) are not taken into account.

10. New Inelastic Hinge Type: Parametric P-M (multi-curve) continued

- Ultimate positive and negative curvature can be specified.
- This hinge type can be applied to nonlinear static or nonlinear time history analysis.

Properties > Inelastic Properties > Inelastic Hinge

Iulti-Cu Multi-Cu Axial Fo	rve Data urve II vrce (P) 0.0	Define Axial Force	kN	Primary Curve	$\uparrow/$
	Curvature (rad/m)	Moment (kN*m)	^		
1	-5.000e-001	-1.001e+003			
2	-1.000e-001	-1.000e+003			
3	0.000e+000	0.000e+000			
4	1.000e-001	1.000e+003			
5	5.000e-001	1.001e+003		Deformati	ion Indexes
6			J	Strain Hardening T	Type
			~	Isotropic	Kinematic
				○ Mixed	β
Initial S	tiffness				
(+)	10000	kN*m^2			
(-)	10000	kN*m^2		OK	Cancel
				UK	Cancel

٠

- P-M Multi-Curve Type allows for bilinear and multilinear plasticity.
- The first data point corresponds to negative rupture and the last data point corresponds to positive rupture. One data point – the zero point – must be at the origin. A different number of data points can be used for the positive and negative sections of the curve.
- Moment and curvature relationship can depend on the axial force and the dependence can be different in tension and in compression.The number of axial forces must be two at least.
- To obtain the bending moment-curvature curve for a level of axial force not input, interpolation is used. This interpolation is performed, not on the bending moment-curvature curves, but on the momentplastic curvature curves. The moment-plastic curvature curves are automatically calculated from the bending moment-curvature curves.
- Strain hardening can be isotropic, kinematic or mixed. The momentcurvature relationship can either be symmetric or non-symmetric. Whether it is symmetric or non-symmetric, entire moment-curvature curve should be entered.

11. Precast Concrete Girder Section Database Update: AS-Super T RMS 2019

- AS-Super T RMS 2019 T1, T2, T3, T4, T5
- This section database is also updated in the Tendon Template.
- Properties > Section > PSC

Section Data	Select PSC DB X
Section Data × DB/User Value SRC Combined PSC Tapered Composite Steel Girder Section ID 1 Image: PSC-Value Image: PSC-Value Image: PSC-Value Image: PSC-Value Name T1 Image: PSC-Value Image: PSC-Value Image: PSC-Value Image: PSC-Value Define by Coordinates Section Data Section Properties Image: PSC-Value Image: PSC-Value Param. for Design Image: PSC-Value Image: PSC-Value Image: PSC-Value Image: PSC-Value Param. for Design Image: PSC-Value Image: PSC-Value Image: PSC-Value Image: PSC-Value Param. for Design Image: PSC-Value Image: PSC-Value Image: PSC-Value Image: PSC-Value Param. for Design Image: PSC-Value Image: PSC-Value Image: PSC-Value Image: PSC-Value Image: PSC-Value Param. for Design Image: PSC-Value Image: PSC-Value <th>Select PSC DB</th>	Select PSC DB
Shear Check Auto Outo Outo Outo Auto Position Qy Auto Thk. for Shear(total) Auto Z1: 300 mm 0 mm Image: Check Image: Check <td>OK AS-Super-T RMS 2019 DB</td>	OK AS-Super-T RMS 2019 DB
	Tendon Template

12. Response Spectrum Function: AS 5100.2: 2017

• Response spectrum function as per AS 5100.2: 2017

Load > Response Spectrum Data > RS Functions

13. User-Defined Drying Basic Shrinkage Strain: AS 5100.5-2017

• The development of shrinkage strain can be defined using user-defined drying basic shrinkage strain as well as recommended values for each cities when applying AS 5100.5-2017.

14. Relaxation of Tendons: AS 5100.5-2017

- Prestress loss due to the relaxation of tendon is calculated as per equation 3.3.4.3 of AS 5100.5-2017 using user-defined basic relaxation, Rb.
- Rb(%) is the basic % relaxation of a tendon at 1,000 hour.
- Load > Load Type > Temp./Prestress
- Load > Prestress Loads > Tendon Property

	Tendon Type			,
	Tendon Name		Тор	
	Tendon Type		Internal(Post-Tension)	~
	Material	3	3: 1850S	~
	Total Tendon Area		2774	mm^2
	Duct Diameter		0	mm
	Relaxation Coefficient		AS 5100.5-2017 V Rb(%) 2.5
Ī	Characteristic Value of Strength (fpb)	1850	N/mm^2
	Curvature Friction Factor		0.3	
	Wobble Friction Factor		6.6e-006	1/mm
	External Cable Moment Magnifier		0	N/mm^2
	Anchorage Slip(Draw in)		Bond Type	
	Begin : 6 m	n	Bonded	
	End : 6 m	n		
			OK Cancel	<u>A</u> pply

3.3.4.2 Basic relaxation

The basic relaxation of a tendon (R_b) after one thousand hours at 20°C and 0.8 f_{pb} shall be determined in accordance with AS/NZS 4672.1.

3.3.4.3 Design relaxation

Subject to Clause 3.3.4.4, the design relaxation of a tendon (R) shall be determined from the following equation:

$$R = k_6 k_7 k_8 R_b \qquad \dots 3.3.4.3$$

where

- k_6 = a coefficient, dependent on the duration of the prestressing force
 - $= \log [5.4(j)^{1/6}]$
 - j = time after prestressing, in days
- k_7 = a coefficient, dependent on the stress in the tendon as a proportion of f_{pb} , determined from Figure 3.3.4.3
- k_8 = a coefficient, dependent on the average annual temperature (*T*) in degrees Celsius, taken as *T*/20 but not less than 1.0
- R_b = basic relaxation of a tendon after one thousand hours at 20°C, as specified in Clause 3.3.4.2

AS 5100.5-2017 Specification

15. User-Defined Stress Limit for Crack Check: AS 5100.5-2017

- For the crack control for flexure in prestressed beams, the maximum increment of steel stress was fixed as 160 MPa in the previous version.
- Now, it can be defined by the user.
- PSC > Design Parameter > AS 5100.5: 17

SC Design Parameters		×	
Input Paramaters Maximum nominal aggregate size (8.2.4.2)	Crack Control Maximum Increment of Steel Stress		
d_g : 16 mm Output Paramaters	160 N/mm^	2	
Ultimate limit states	Serviceability limit state		
Flexural resistance			
Shear resistance			
Torsional resistance			
	Select All Unselect	All	
	OK Can	cel	
PSC	Design parameter		
			- •
			Super T Girder Bridge

16. Dynamic Load Allowance for Expansion Joint: AASHTO LRFD

- Dynamic load allowance is defined in the Vehicle dialog in the moving load analysis by AASHTO LRFD.
- Different dynamic load allowance can now be applied to a separate structure group using this new feature.
- Load > Load Type > Moving Load > Moving Load Code > AASHTO LRFD
- Load > Moving Load Analysis Data > Dynamic Load Allowance

Dynamic Load Allowance	×
Select Structure Group	
Cross Beam 1 Deck Joints	
Deck Joint IM 75 %	
Add Modify Delete	
Group List Factor	
Deck Joints 75	
Close	

Dynamic Load Allowance

Table 3.6.2.1-1—Dynamic Load Allowance, IM

Component	IM
Deck Joints—All Limit States	75%
All Other Components:	
Fatigue and Fracture Limit State	15%
All Other Limit States	33%

AASHTO LRFD Specification

17. Standard Vehicles: Indiana Department of Transportation

- Toll Road Loading No.1, Toll Road Loading No.2, Special Toll Road Truck, Michigan Train Truck No.5, Michigan Train Truck No.8
- SUPERLOAD 11 Axles Loading, SUPERLOAD 13 Axles Loading, SUPERLOAD 14 Axles Loading, SUPERLOAD 19 Axles Loading 1, SUPERLOAD 19 Axles Loading 2

Load > Load Type > Moving Load > Moving Load Code > AASHTO LRFD

Load > Moving Load Analysis Data > Vehicles

18. Standard Vehicles: Colombian CCP-14

CCP-14 Truck, CCP-14 Tandem

19. Auto-Generation of Load Combination: BS 5400

• Auto-generation of load combinations with respect to BS 5400 is now available for concrete structures.

Results > Load Combination

Г	No	Name	Active	Type	Description	~		LoadCase	Eactor A	O Steel
┢	1	al CB1	Active	Add	LILS Comb 1: 1 32D+1		┢	D(ST)	1 3200	Design Code : 03 5400 V
┢	2	gLCD1	Active	Add	ULS Comb 1: 1.32D+1		ι÷-	DW(ST)	1.9250	Manipulation of Construction Stage Load Case
┢	- 2	aLCB3	Active	Add	ULS Comb 1: 1.32D+1.		⊢		1 3200	ST Conly CS Only I ST +CS
┢	4	gLCD3	Active	Add	ULS Comb 1: 1.32D+1		⊢	EV(ST)	1 3200	
┢	5	gLOD4	Active	Add	ULS Comb 2: 1 32D+1		⊢	EP(ST)	1.6500	Bridge Type Roadway ~
┢	6	gLOD5	Active	Add	ULS Comb 2: 1.32D+1		⊢	EH(ST)	1.6500	Load Factors for Permanent Loads
┢	7	al CB7	Active	Add	ULS Comb 2: 1.32D+1			STI (ST)	1 3200	I ype or Load Load Factor
┢	8	gLOD7 gLCB8	Active	Add	ULS Comb 2: 1.32D+1		⊢	Settlement(SM)	1 3200	Dead Load
h	9	al CB9	Active	Add	ULS Comb 2: 1.32D+1		\vdash	PS(ST)	1 1000	Deck Surfacing(DW)
t	10	gLOD3 gL CB10	Active	Add	ULS Comb 2: 1.32D+1		⊢	CR(ST)	1 3200	Other Loads(DC)
┢	11	gLOB10	Active	Add	ULS Comb 2: 1.32D+1		\vdash	SH(ST)	1 3200	Vertical Earth Pressure
┢	12	al CB12	Active	Add	ULS Comb 2: 1.32D+1		\vdash	Dead Load(CS)	1 3200	Non-vertical Earth Pressure
┢	13	al CB13	Active	Add	ULS Comb 2: 1 32D+1		\vdash	Tendon Secondary(CS)	1 1000	Partial Safety Factor for Moving Load
t	14	al CB14	Active	Add	ULS Comb 2: 1.32D+1		*		1.1000	Road Traffic Case :
t	15	al CB15	Active	Add	ULS Comb 2: 1.32D+1					BS Vehicle Type · HB slope
┢	16	al CB16	Active	Add	ULS Comb 2: 1 32D+1					
┢	17	gLOB10	Active	Add	ULS Comb 2: 1.32D+1					BS Vehicle Partial Factor Table
┢	18	gLOD II gL CB18	Active	Add	ULS Comb 2: 1.32D+1					Load Case Vehicle Name
┢	19	al CB19	Active	Add	ULS Comb 2: 1.32D+1					HA HA alone
┢	20	gLCB10	Active	Add	ULS Comb 2: 1.32D+1					HA&HB HA with HB
┢	21	gLOD20	Active	Add	ULS Comb 2: 1.32D+1					нв нв аюле
┢	22	gLOD21	Active	Add	ULS Comb 2: 1.32D+1	,			~	Add Delete
1	1	920022	7 101170	17100	020 00110 2. 1.020 1.1					Partial Load Factor for Inaccurate Load Effect
_										For Ultimate Limit State 1.10
-	/	Im	port	Auto Gen	eration Spread She	et Form	n	Copy into Steel Design	~	

20. Design Report in Czech

• The design reports are provided in Czech for the composite steel girder design and prestressed concrete girder design as per Eurocode.

21. Response Spectrum Function: Philippines DPWH-BSDS 2013

- Department of public works and highways bridge seismic design specifications 2013, Philippines
- Load > Response Spectrum Data > RS Functions

incuon Name		Spectral Data Type		Outers				
DPWH-LRFD BSDS(201	3)	Normalized Accel.			Uispiacement	Design Spectrum :	DPWH-LRFD BSD)S(2013) 🗸 🗸
mport File Desi	gn Spectrum	Scaling Scale Factor	1	Gravity 9806 mm/sec^2	Graph Options	Ground Type		
Period Spe (sec)	ctral Data 🔦 (g)	O Maximum Value	0 g	Damping Ratio	Y-axis log scale	I	Оп	ΟШ
1 0.0000 2 0.0600 3 0.1200	0.5000	1.092				Peak Ground Acc (PGA)	eleration Coefficient	0.5
4 0.1527 5 0.1800	1.1000	0.892				Spectral Accelera Period 0.2 sec (S	ation Coefficient at s)	1.1
6 0.2400 7 0.3000	1.1000 1.1000	но 0.692 С 0.592				Spectral Acceler Period 1.0 sec (S	ation Coefficient at 1)	0.6
8 0.3600 9 0.4200	1.1000 1.1000	й 0.492 U U 0.392 0.392				Response Modifi	cation Factor (R)	1 ~
0 0.4800 1 0.5400	1.1000 1.1000	0.292						
2 0.6000 3 0.6600	1.1000	0.092	.01 2.01 Period	3.01 4.01 i (sec)	5.01 6.01	Max. Period	6	(Sec)
41 0.7200	1.1000 *			- ()				
ription DPWH-LRF	-D BSDS(2013): GI	T=I, PGA=0.50, Ss=1.10,	S1=0.60, RMF=1.00					
				OK	Cancel Apply		OK	Cancel
				_				

22. India Material Database Update

- Concrete: IRC:112-2011, IRS Concrete Bridge Code
- Properties > Material > Concrete

aterial Data			×
General			
Material ID 1		Name	
Elasticity Data			
Type of Design Cor	ocrete V	Steel	
		Standard	\sim
		DB	~
		Concrete	
	- -	Standard	IRC(RC) 🗸
Type of Material			Code 🗸 🗸
Isotropic	Orthotropic	DB	
Steel			M15
Modulus of Elasticity :	Modulus of Flasticity : 0,0000e+000		M20 M25
Poisson's Patio	0		M30
POISSOITS Rado			M35 M40
Thermal Coefficient :	0.0000e+000	1/[C]	M45
Weight Density :	0	kN/m^3	M50 M55
Use Mass Density:	0	kN/m^3/g	M60
			M65
Modulus of Elasticity :	3.4312e+007	kN/m ^2	M75
Deisseele Delie	0.0	NN/III. 2	M80 M85
Poisson's Ratio :	0.2		M90
Thermal Coefficient :	1.2000e-005	1/[C]	
Weight Density :	25	kN/m^3	
Use Mass Density:	2.549	kN/m^3/g	
	IRC·11	2-2011	

General				
Material ID 1		Name		
lasticity Data				
Type of Design Concr	ete 🗸	Steel		
		Standard		~
		DB		~
		Concrete		
	·	Standard	IRS(RC)	\sim
Type of Material			Code	
	Orthotropic	DB		~
Steel			M20	
Modulus of Elasticity :	0.0000e+000	kN/m^2	M30	
Poisson's Ratio :	0		M35 M40	
Thermal Coefficient :	0.0000e+000	1/[C]	M45 M50	
Weight Density :	0	kN/m^3	M55 M60	
Use Mass Density:	0	kN/m^3/g	1100	_
Concrete				
Modulus of Elasticity :	3.1000e+007	kN/m^2		
Poisson's Ratio :	0.2			
Thermal Coefficient :	1.1700e-005	1/[C]		
Weight Density :	25	kN/m^3		
Use Mass Density:	2.549	kN/m^3/g		

 \times

23. IRS Load Combination

- Load combination can now be auto-generated based on recommendations in IRS Concrete Bridge Code, including derailment loads
- These load combination could be used for IRS PSC design

Results > Load Combination

	No	Name	Active	Туре	E	Description ^		LoadCase	Factor	^
►	1	cLCB1	Strengt	Add	Г	1U:D:SIDL:SM:EP:F	F	Dead 1(ST)	1.2500	
	2	cLCB2	Strengt	Add	Г	1U:D:SIDL:SM:rEP:		Bouyancy(ST)	2.0000	
	3	cLCB3	Strengt	Add	Г	2U:D:SIDL:SM:W		Dead DC(ST)	2.0000	
	4	cLCB4	Strengt	Add	Г	2U:D:SIDL:SM:rW		Dead DW(ST)	2.0000	
	5	cLCB5	Strengt	Add	Г	2U:D:SIDL:SM:W:FI		Pavement(ST)	2.0000	
	6	cLCB6	Strengt	Add	Г	2U:D:SIDL:SM:rW:F		Ballast(ST)	2.0000	
	7	cLCB7	Strengt	Add	Г	2U:D:SIDL:1.6RS(X)		Settlement(ST)	1.0000	
	8	cLCB8	Strengt	Add	Г	2U:D:SIDL:1.6RS(X)		Earth Pressure(ST)	1.7000	
	9	cLCB9	Strengt	Add	Г	2U:D:SIDL:1.6RS(X)		Horizontal EP(ST)	1.7000	
	10	cLCB10	Strengt	Add	Г	2U:D:SIDL:1.6RS(X)		Vertical EP(ST)	1.7000	
	11	cLCB11	Strengt	Add	Г	2U:D:SIDL:-1.6RS(X		Earth Surcharge(ST)	1.7000	
	12	cLCB12	Strengt	Add	Г	2U:D:SIDL:-1.6RS(X		Ground Water Pressure(ST)	1.7000	
	13	cLCB13	Strengt	Add	Г	2U:D:SIDL:-1.6RS(X		LL Surcharge(ST)	1.7000	
	14	cLCB14	Strengt	Add	Г	2U:D:SIDL:-1.6RS(X		FPLL(ST)	1.5000	
	15	cLCB15	Strengt	Add	Г	2U:D:SIDL:0.48RS()		Live Load(ST)	1.7500	
	16	cLCB16	Strengt	Add	Г	2U:D:SIDL:0.48RS()		Centrifugal(ST)	1.7500	
	17	cLCB17	Strengt	Add	Г	2U:D:SIDL:-0.48RS(Braking(ST)	1.7500	
	18	cLCB18	Strengt	Add	Г	2U:D:SIDL:-0.48RS(SET(SM)	1.0000	
	19	cLCB19	Strengt	Add	Г	2U:D:SIDL:0.48RS()		MVLC(MV)	1.7500	
	20	cLCB20	Strengt	Add	Г	2U:D:SIDL:0.48RS()	*			
	21	cLCB21	Strengt	Add	Г	2U:D:SIDL:-0.48RS(v				
:						>				~
-							-			
~				Auto Com	- Fai	Coursed Objects From]		
Co	ру	Im	port	Auto Gene	eration	spread Sheet Forr	m			
	[C:\Reta Tec	ting\TPS Load	Combinations\6	ample	Model in Preuse		Make Load Combination Shoot	Class	
am	e: [Gripeta res	ung µKS Loau	Combinations p	ample	Browse		Make Load Combination Sneet	<u>C</u> lose	_

Add C Replace
Code Selection Steel Concrete SRC Steel Composite Design Code : IRS
Manipulation of Construction Stage Load Case ○ ST Only ○ CS Only
Ultimate State Option Consider Creep, Shrinkage and Differential Temperature for ULS Load Combination
Partial Safety Factor for Differential Settlement Ultimate State 1 Service State 1
Load Case for Derailment
OK Cancel
Derailment Load Cases X
Ultimate Limit State Serviceability Limit State DeRaiL 1 DeRaiL 2 DeRaiL 3 -> <
OK Cancel

Automatic Generation of Load Combinations

24. Prestressed Concrete Design by IRS Concrete Bridge Code

• Prestressed concrete girder design by IRS Concrete Bridge Code is now available.

🕍 View Structure Node/Eleme	ent Properties Bound	iry Load Ar	nalysis Results	PSC	Pushover									
Ref PSC Design Mate	erial ST PSC S	ament Assianment		Result T	ables -									
Parameters Design (Output I		ura Clare			1 Torsional Res	sistance								
Design/Output i		ure class	Perform Excel	Design	Maximum	n Shear F	orce							
age Serviceability Loa	ad Combination Type 🔂 Torsio	n & Interface Shear	Design Report	SC Re	1 Design Lo	ad								
Design Parameter	PSC Design Data		PSC Design	PSC Des	Load C	Combinati	on Name :	ULS1						
					Design	n Situatior	ns :							
SC Design Parameters)	×	Load C	Combinati	on Type :							
					N _{Ed}	= -18	066.337 kN	1						
Design Code : IRS /				-	VEd	= .	244.386 kN							
Input Parameters					I Ed	- 20	293.826 KIN	1 • m						
Design Parameters (Ultimate limit states)				-	IVIEd	- 35	740.713 KIV	4 · m						
Moment resistance		Prestressing Steel T	ype		- Design s	strenath of	concrete					(IRS.6.4.2.8	3)	
Consider tendons in tensile zone	 Consider all tendons 	Smooth bars and	wires		f _{ed} =	α _{cc} · f _{ck}	/ Vc =	1	7.867 MPa	1			<u>'</u>	
Vilser Input Data Mo	difu design parameters	○ Strands		-										
	O Ser Input Data Modify design parameters					strength of	Reinforcem	ent				(IRS,6.2.2)		
Construction Type					f _{yd} =	f _{yk} / γ _{s_re}	ebar =	43	4.783 MPa	1				
○ Segmental	Non-Segmental													
					2 Check Tor	rsional Re	sistance							
Output parameters				1	Closed	Section I	Part					(100, 40,5,0)		
Ultimate limit states	Serviceability limit states			-	- Design F	- T / (2	s . A) =	0.02	MPa		(IRS, 10.5.2) (IRS CE	C 15 4 4 4 1	Equation
Ultimate bending resistance	Stress for cross section	at a construction stage		-	W	here	II wo Ao	, -	0.02	A IVII a			0 13.4.4.4, 1	-quation
	Strong for cross paction	-				V+	= Torsio	nal Stres	s					
		at service loads				T	= T _{Ed}							
✓ Torsional resistance	Principal stress at a co	struction stage				h wo	= wall th	nickness	for torsion	=	= 400.0)77 mm		
	Principal stress at serv	ce loads				A,	= area e	enclosed	by median v	wall line =	 15612913 	3.33 mm ²		
	Tensile stress for presile	ressing steel												
		-			v _{t,r}	_{min} = N	linimum tors	sional res	sistance	= 0	.420 MPa	(IRS CE	C, Table 17)	
	C Clack Control			-						≥ vt		lorsion	al R/F not r	equired
		Select All				= 1	/ (b • d) =		0.039 MP-		+ $+$ $+$	(IPS CE	C 15 / 3 1 /	Equatio
		Select All	Unselect All		Vts V/I	here v	/ (b · u) =		0.035 MPa		+++-	(INS CE	0 10.4.3.1, E	_quatio
				_		Vte	= Shear	stress in	1 section		+			
		OK	Cancel	-		V	- 1/		244 296 1	-NI	+++-			++